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Abstract
We attempt to point out the intimate relation between Killing–Yano tensors and
non-standard supersymmetries, along the way reviewing some recent results.
The Euclidean Taub–NUT space is taken to illustrate some of the aspects of
the general discussion about the connection between spacetime higher order
geometrical symmetries and supersymmetries. The dynamical symmetry of this
space leads in a natural way to an infinite dimensional twisted loop superalgebra
of the conserved operators.

PACS number: 04.62.+v

1. Introduction

In quantum field theories in curved spaces, an important problem is to find the symmetries
having geometrical sources able to produce conserved quantities. Spacetime isometries and
associated Killing vector fields give rise to constants of motion along geodesics. Besides the
ordinary isometries, there are more subtle hidden symmetries of the spacetimes encapsulated
in higher rank tensors that can occur in association with some supersymmetries.

Let (Mn,g) be an n-dimensional Riemannian manifold, the covariant derivative in the
tensor formalism is defined using the Levi-Civita connection and the indices µ, ν, . . . will be
raised and lowered with the metric gµν or its inverse gµν .

Definition 1. A symmetric tensor of Kµ1...µr
of rank r > 1 satisfying a generalized Killing

equation

K(µ1...µr ;λ) = 0, (1)

is called a Stäckel–Killing (S–K) tensor.

Equation (1) ensures that the homogeneous function in momentum pµ

K = Kµ1...µr
pµ1 · · · pµr , pµ = gµν(x)ẋν (2)
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is a first integral of the geodesic equation, where the over-dot denotes the ordinary proper time
derivative.

The next interesting geometrical object connected with higher order symmetries of a
manifold after S–K tensors is the Killing–Yano (K–Y) tensors.

Definition 2. A differential p-form f is called a K–Y tensor if its covariant derivative fµ1...µp;λ
is totally antisymmetric.

Equivalently, a tensor is called a K–Y tensor of valence p if it is totally antisymmetric and
satisfies the equation

fµ1...(µp;λ) = 0. (3)

Such objects were introduced from a purely mathematical point of view [1], but
subsequently it was realized at the intimate connection between K–Y tensors and non-standard
supersymmetries, both at classical and quantum level.

These two generalizations (1) and (3) of the Killing vector equation could be related. Let
fµ1...µp

be a K–Y tensor, then the tensor field

Kµν = fµµ2...µp
f

µ2...µp

ν (4)

is a S–K tensor and it sometimes refers to this S–K tensor as the associated tensor to f .
However, the converse statement is not true in general: not all S–K tensors of valence 2 are
associated to a K–Y tensor.

To illustrate the general results we make use of the Euclidean Taub–NUT space. For a
special choice of coordinates the Euclidean Taub–NUT metrics [2] take the form

ds2
G = f (r)[dr2 + r2 dθ2 + r2 sin2 θ dϕ2] + g(r)[dχ + cos θ dϕ]2 (5)

where r > 0 is the radial coordinate of R
4 − {0} , the angle variables (θ, ϕ, χ), (0 � θ <

π, 0 � ϕ < 2π, 0 � χ < 4π) parametrize the unit sphere S3. For the generalized Taub–NUT
metrics [3] the functions f (r) and g(r) take, respectively, the form

f (r) = a + br

r
, g(r) = ar + br2

1 + cr + dr2
, (6)

where a, b, c and d are constants. If the constants a, b, c and d from equation (6) are subject
to the constraints c = 2b

a
and d = b2

a2 the generalized Taub–NUT metrics [3] coincide, up to a
constant factor, with the standard one [2] on setting 4m = a

b
with m as a real parameter.

Spaces with a metric of the form above have an isometry group SU(2) × U(1) with four
Killing vectors.

As observed in [4], the standard Taub–NUT geometry also possesses four K–Y tensors of
valence 2. The first three are rather special, namely they are covariantly constant (xi, i = 1, 2, 3
are Cartesian coordinates)

f i = 8m(dχ + cos θ dϕ) ∧ dxi − εijk

(
1 +

4m

r

)
dxj ∧ dxk,

f i
νλ;µ = 0, i, j, k = 1, 2, 3.

(7)

They are mutually anti-commuting and square the minus unity. Thus they are complex
structures realizing the quaternion algebra and the standard Taub–NUT manifold is hyper-
Kähler.

In addition to the above vector-like K–Y tensors there is also a scalar one

f Y = 8m(dχ + cos θ dϕ) ∧ dr + 4r(r + 2m)
(

1 +
r

4m

)
sin θ dθ ∧ dϕ (8)

which has a non-vanishing component of the field strength f Y
rθ;ϕ �= 0.
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In the standard Taub–NUT case there is a conserved vector analogous to the Runge–Lenz
vector of the Kepler-type problem: �K = 1

2
�Kµνẋ

µẋν . The components Ki
µν involved with the

Runge–Lenz-type vector are S–K tensors and they can be expressed as symmetrized products
of the K–Y tensors f i (7) and f Y (8) [5].

Iwai and Katayama [3] showed that the metric (5) still admits a Kepler-type symmetry if
the functions f (r) and g(r) have the form (6). It is a remarkable fact that the S–K tensors
involved in the conserved Runge–Lenz vector of the generalized Taub–NUT metrics cannot
be expressed in terms of K–Y tensors. These generalizations do not admit K–Y tensors, the
only exception being the standard Taub–NUT metric [6].

The paper is organized as follows: first we explain the role of K–Y tensors in connection
with non-standard supersymmetries, and the construction of the Dirac-type operators. In
section 3 we investigate the new type of symmetries generated by the covariantly constant
K–Y tensors that realize certain square roots of the metric tensor. In section 4 we discuss the
covariantly non-constant K–Y tensors, their role in the absence of gravitational anomalies and
the relations with hidden symmetries. Finally we discuss shortly some problems that deserve
further attention.

2. Non-standard supersymmetries and Dirac-type operators

The pseudo-classical approach of a spin- 1
2 fermion in a curved spacetime can be described

by the supersymmetric extension of the ordinary relativistic particle [7–9]. The equations of
motion of the pseudo-classical Dirac particle can be obtained from the Lagrangian

L = 1

2
gµνẋ

µẋν +
i

2
ηabψ

a Dψb

Dτ
(9)

where the real Grassmann variables ψa are introduced to take into account the spin degrees of
freedom. Here τ is the proper time and ηab is the flat-space metric. The theory described by
the Lagrangian (9) admits generic symmetries which exist for any spacetime metric gµν .

For spacetimes admitting K–Y tensors, non-generic supersymmetries can be constructed.
It has been shown that non-generic supercharges can be constructed from K–Y tensors using
the formula [8, 10]

Qf = ẋµ1fµ1...µp
ψµ2 · · · ψµp − i

p + 1
fµ2...µp;µ1ψ

µ1 · · · ψµp+1 . (10)

Passing from pseudo-classical description of the fermions to the Dirac theory, we note
that for any isometry with a Killing vector Rµ, there is an appropriate operator [11]

Xk = −i
(
Rµ∇µ − 1

4γ µγ νRµ;ν
)
, (11)

which commutes with the standard Dirac operator Ds

Ds = iγ µ∇µ, (12)

where ∇µ are the spin covariant derivatives including spin-connection, while γ µ are the
standard Dirac matrices carrying natural indices.

Moreover each K–Y tensor fµν produces a non-standard Dirac operator of the form [11]

Df = iγ µ
(
f ν

µ∇ν − 1
6γ νγ ρfµν;ρ

)
(13)

which anticommutes with the standard Dirac operator Ds and can be involved in new types of
genuine or hidden (super)symmetries.

3



J. Phys. A: Math. Theor. 41 (2008) 164072 M Visinescu

3. Covariantly constant Killing–Yano tensors

Remarkable superalgebras of Dirac-type operators can be produced by special second-order
K–Y tensors that represent square roots of the metric tensor.

Definition 3. The non-singular real or complex-valued K–Y tensor f of rank 2 defined on Mn

which satisfies

f µ
α fµβ = gαβ, (14)

is called a unit root of the metric tensor of Mn, or simply a unit root of Mn.

Let us observe that (14) is a particular case of equation (4) with the metric tensor as
an ordinary S–K tensor. It was shown that any K–Y tensor that satisfies equation (14) is
covariantly constant [12], i.e. fµν;σ = 0.

In what follows we look for manifolds allowing families of unit roots f = {f i |i =
1, 2, . . . Nf } having supplementary properties which should guarantee that (I) the linear space
Lf = {ρ|ρ = ρif

i, ρi ∈ R} is isomorphic with a real Lie algebra and (II) each element of
Lf − 0 is a root (of arbitrary norm). In these circumstances we have the following theorem
[13]:

Theorem 1. The unique type of family of unit roots with Nf > 1 having the properties (I) and
(II) are the triplets f = {f 1, f 2, f 3} which satisfy

〈f i〉〈f j 〉 = −δij 1n + εijk〈f k〉, i, j, k . . . = 1, 2, 3. (15)

Proof. We have denoted by 〈f 〉 the matrix form of the K–Y tensor f . Taking into account
that εijk is the antisymmetric tensor with ε123 = 1 we recognize that equations (15) are the
well-known multiplication rules of the quaternion units or similar algebraic structures (e.g.
the Pauli matrices). Consequently, the matrices 〈f i〉 and 1n generate a matrix representation
of the quaternionic algebra H. Other choices are forbidden by the Frobenius theorem. �

If the unit roots f i have only real-valued components we recover the hypercomplex
structures that obey equation (15) and these are connected with the hyper-Kähler structure of
the space. An example of hyper-Kähler manifold is the Euclidean Taub–NUT space which is
equipped with only one family of real unit roots.

The main geometric feature of all manifolds admitting a triplet of unit roots is given by

Theorem 2. If a manifold Mn allows a triplet of unit roots then this must be Ricci flat (i.e.
Rµν = 0).

Proof. As in the case of the hyper-Kähler manifolds, we start with the identity 0 =
fµν;α;β − fµν;β;α = fµσRσ

ναβ + fσνR
σ
µαβ , giving Rµναβf µ

σ f ν
τ = Rσταβ, and calculate

Rµναβf 1αβ = Rµνσβf 3σ
α (〈f 3〉〈f 1〉)αβ = Rµνσβf 3σ

α f 2αβ = −Rµναβf 1αβ = 0.

Then, permutating the first three indices of R we find the identity 2Rµανβf 1αβ = Rµναβf 1αβ =
0. Finally, writing Rµν = Rµανβf 1α

τ f 1βτ = −Rµασβf 1σ
ν f 1αβ = 0, we draw the conclusion

that the manifold is Ricci flat. The same procedure holds for f (2) or f (3) leading to similar
identities. �

Note that the manifolds possessing only single unit roots (as the Kähler ones) are not
forced to be Ricci flat.

The transition from the complex structures to unit roots has to be productive for the
Dirac theory where the complex-valued K–Y tensors could be involved in the theory of the
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Dirac-type operators. The covariantly constant K–Y tensor gives rise to Dirac-type operators
of the form (13) connected with the standard Dirac operators as follows:

Theorem 3. The Dirac-type operator Df produced by the K–Y tensor f satisfies the condition

(Df )2 = D2
s (16)

if and only if f is an unit root.

Proof. The arguments of [12] show that the condition (16) is equivalent to equation (14) with
f being a covariantly constant K–Y tensor. �

In particular, referring to the Euclidean Taub–NUT space, from the covariantly constant
K–Y tensors f i (7) we can construct three Dirac-type operators D(i) which anticommute with
standard Dirac operator Ds (12). It is convenient to define

Qi = iH−1D(i), (17)

where H = −γ 0Ds is the massless Hamiltonian operator. These operators form a
representation of the quaternionic units

QiQj = δij I + iεijkQk. (18)

4. Killing–Yano tensors and hidden symmetries

Let us consider a non-trivial S–K tensor of valence 2 with a quadratic constant along the
geodesic flow constructed as in equation (2). The generalized Killing equation (1) represents
the necessary and sufficient condition for the existence of a quadratic constant of motion as
follows from the Poisson bracket of K with the Hamiltonian. Passing from the classical motion
to the hidden symmetries of a quantized system, the corresponding quantum operator analog
of the quadratic function (2) is [11, 14, 15]

K = �µKµν�ν (19)

where �µ is the covariant differential operator on the manifold Mn. Working out the
commutator of (19) with the scalar Laplacian H = �µ�µ, we get after some calculations

[H,K] = − 4
3

{
K

[µ
λ Rν]λ

}
;ν�µ (20)

which means that in general the quantum operator K does not define a genuine quantum
mechanical symmetry [15]. On a generic curved spacetime there appears a gravitational
quantum anomaly proportional to a contraction of the S–K tensor Kµν with the Ricci tensor
Rµν .

It is obvious that for a Ricci-flat manifold this quantum anomaly is absent. However,
a more interesting situation is represented by the manifolds in which the S–K tensor Kµν

can be written as a product of K–Y tensors [11] as in equation (4). On the other hand, the
integrability condition for any solution of (3) implies the vanishing of the commutator (20)
for S–K tensors which admit a decomposition in terms of K–Y tensors. That is the case of
the standard Euclidean Taub–NUT space, but not for his generalizations [3]. In the case of
generalized Taub–NUT metrics, there are S–K tensors, but no K–Y tensors and consequently
for these spaces there are quantum gravitational anomalies [16].

Usually in N = 1 supersymmetric quantum-mechanical models there is a simple H
ermitian supercharge Q that close on the Hamiltonian H, i.e. Q2 = H . Sometimes it is
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possible to extend the N = 1 supersymmetry to a higher one and the new supercharges close
on H

{Qα,Qβ} = 2δαβH. (21)

In the case of the Dirac theory, the new Dirac-type operators constructed from covariantly
constant K–Y tensors close on the Klein–Gordon operator, or generally on the square of the
standard Dirac operator as in (16).

In the case of hidden symmetries the supercharges anticommute with the original Q but
do not necessarily close on H. The covariantly non-constant K–Y tensors do not represent
‘square roots’ of the metric tensor, but generate non-trivial S–K tensor (4).

To make things more specific let us consider the Taub–NUT space which is hyper-Kähler
and possesses many non-standard symmetries expressed in terms of four K–Y tensors and
three S–K tensors.

K–Y tensors of the Taub–NUT space generate non-generic supersymmetries with
supercharges of the form (10) [5, 17–19]. In particular, the supercharge QY corresponding to
K–Y tensor f Y enter the Runge–Lenz vector of the Taub–NUT problem [5].

On the other hand, Dirac-type operator constructed from the K–Y tensor f Y (8) is DY

and again it is convenient to define a new operator QY = HDY .
The conserved Runge–Lenz operator of the Dirac theory is

Ki = µ

4
{QY ,Qi} +

1

2
(B − P4)Qi − JiP4, (22)

where B2 = P4
2 − H 2, Ji, (i = 1, 2, 3) are the components of the total angular momentum,

while P4 = −i∂4 corresponds to the fourth Cartesian coordinate x4 = −4m(χ + ϕ).
The operators Ji and Ki are involved in the following system of commutation relations:

[Ji ,Jj ] = iεijkJk, [Ji ,Kj ] = iεijkKk, [Ki ,Kj ] = iεijkJkB2, (23)

and commute with the operators Qi (17)

[Ji ,Qj ] = iεijkQk, [Ki ,Qj ] = iεijkQkB. (24)

The algebra (23) does not close as a finite Lie algebra because of the factor B2. In the standard
treatment one concentrates on individual subspaces of the whole Hilbert space which belong
to definite eigenvalues of B2. This is similar to the dynamical algebra of the hydrogen atom
[20] which can be identified in a natural way with an infinite dimensional twisted loop algebra.

The dynamical algebras of the Dirac theory have to be obtained by replacing this operator
B2 with its eigenvalue q2 − E2 and rescaling the operators Ki . The same kind of problems
appear for the anticommutators involving the fermionic operators Qi and QY . In what follows,
in order to keep the presentation as simple as possible, we shall only give the briefest account
of the algebra of operators connected with hidden symmetries in the bosonic sector. For the
algebra of operators from the fermionic sector the reader should consult [21].

In the bosonic sector of conserved operators, let us define the new operators ‘absorbing’
the operator B:

J i
n = JiBn, Ki

n = KiBn, (25)

for any n = 0, 1, 2 . . . .

Non-trivial commutators of the bosonic sector (23) become[
J i

n, J
j
m

] = iεijkJ
k
n+m,

[
J i

n,K
j
m

] = iεijkK
k
n+m,

[
Ki

n,K
j
m

] = iεijkJ
k
n+m+2. (26)

We should like to show that this algebra can be seen as an infinite dimensional twisted
loop algebra. The simplest way to achieve a Lie algebra of the Kac–Moody-type is to assign
grades to each operators

Ai
2n := JiBn, Bi

2n+2 := KiBn. (27)
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In this way the commutation relations of the bosonic sector are[
Ai

2n, A
j

2m

] = iεijkA
k
2(n+m),[

Ai
2n, B

j

2m+2

] = iεijkB
k
2(n+m+1), (28)[

Bi
2n+2, B

j

2m+2

] = iεijkA
k
2(n+m+2),

and in this Kac–Moody-type algebra the sum of the grades is conserved under commutation
as it is expected.

The same kind of construction can be done in the fermionic sector for the anticommutation
relations of the operators Qi,Q

Y .

5. Concluding comments

To conclude, the Dirac theory in the Euclidean Taub–NUT space gives rise to a large collection
of conserved operators associated with standard (Killing vectors) or hidden symmetries (S–
K, K–Y tensors). They are involved in interesting and non-trivial algebraic structures as
dynamical algebras. The natural way to organize the large collection of conserved operators
is to arrange them in a graded loop superalgebra of the Kac–Moody-type. Further work must
be done to describe the involution automorphism which is needed to define the twisting in
connection with the graded loop algebra of the Kac–Moody-type (28).

We believe that K–Y tensors deserve further attention. They are involved in a multitude
of different topics such as conformal S–K or K–Y tensors, non-standard supersymmetries,
quantum anomalies, index theorems, etc. So far gravitational anomalies have proved to be
absent for scalar fields for spaces admitting K–Y tensors and it would be valuable to know
this persist in the case of the full quantum field theories on curved spaces. Concerning the
axial anomaly and its connection with the index of the Dirac operators [22–24] the role of
K–Y tensors is not obvious. The topological properties of the spaces are more important in
comparison with non-standard symmetries.

Acknowledgments

The author would like to thank Michael Bordag, the organizing committee of the QFEXT07
workshop for the hospitality and support. He would also like to acknowledge the MEC-CEEX
program, Romania, for partial financial support.

References

[1] Yano K 1952 Ann. Math. 55 328
[2] Hawking S W 1977 Phys. Lett. A 60 81
[3] Iwai T and Katayama N 1993 J. Geom. Phys. 12 55
[4] Gibbons G W and Ruback P J 1987 Phys. Lett. B 188 226
[5] Vaman D and Visinescu M 1998 Phys. Rev. D 57 3790
[6] Visinescu M 2000 J. Phys. A: Math. Gen. 33 4383
[7] Berezin F A and Marinov M S 1975 JETP Lett. 21 320
[8] Gibbons G W, Rietdijk R H and van Holten J-W 1993 Nucl. Phys. B 404 42
[9] Mohseni M 2006 Int. J. Mod. Phys. D 15 121

[10] Tanimoto M 1995 Nucl. Phys. B 442 549
[11] Carter B and McLenaghan R G 1979 Phys. Rev. D 19 1093
[12] Klishevich V V 2000 Class. Quantum Grav. 17 305
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